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Splitting the voter Potts model critical point
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Recently some two-dimensional models with double symmetric absorbing states were shown to share the
same critical behavior that was called the voter universality class. We show that, for an absorbing-states Potts
model with finite but further than nearest-neighbor range of interactions, the critical point is split into two
critical points: one of the Ising type and the other of the directed percolation universality class. Similar splitting
takes place in the three-dimensional nearest-neighbor model.
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Nonequilibrium phase transitions are recently attractingdescribed with3=0. In addition, the time decay of the order
increasing theoretical interest. One of the motivations drivparameter at criticality is also slower than any power-law
ing the research in this field is the idea that, similar to equi-decay and is, in fact, logarithmigp~ 1/In(t)] as shown ex-
librium systems, nonequilibrium continuous phase transiactly [13]. Some other exponents of voter universality class
tions can be also divided into several, hopefully not so manyvere also determinefd 0].
universality classefl]. Indeed, there are some examples that An interesting feature of the voter model, which was not
show that such a classification, at least to some extent, can lyet addressed, is the fact that at its critical point actually two
made. Particularly interesting results exist for models withphenomena seem to take place. One of them is the symmetry
absorbing states, and a notable example is the directed pésreaking between two competing states of the model, which
colation(DP) universality class. A conjecture by Jenssen ands similar to the symmetry breaking in the equilibrium Ising
by Grassberg€2] that models with a single absorbing state model. The second phenomenon is the phase transition be-
should belong to the same universality class has by now veriween active and absorbing phases of the model. Since there
convincing supports. Another universality class encompassds no symmetry breaking transition in one-dimensional equi-
models with double absorbing stafe&s4], which in one di-  librium Ising model, it is easy to understand that for models
mension (I=1) includes also models whose dynamics haswith two absorbing states id=1, the symmetry breaking
some additional symmetr{parity conservation[5]. How-  must result from the absorbing phase transition and thus both
ever, it is also known that any asymmetry in the dynamicsphenomena take place simultaneously. But this is no longer
which would favor any of the absorbing states, drives thethe case ford>1 models, and the coincidence of these two
system into a DP universality claf8]. Universality of mod- transitions should not be taken for granted.
els with more than two absorbing states is even more prob- In the present paper we study a recently introduced non-
lematic, because for models with symmetric absorbing statesquilibrium Potts model whose dynamics has two absorbing
some details of the dynamics might affect the critical behavstates[9]. We show that the model with nearest-neighbor
ior too [7]. It is becoming clear that a task of classifying interactions on square lattice belongs to the voter universal-
nonequilibrium phase transitions is far from complef&¢ ity class. However, with an extended range of interactions

Numerical results that support the above classificatior{up to third nearest neighborthe voter critical point is split.
come mainly from one-dimensional models. The situation forStarting from the disordered phase and reducing a tempera-
d>1 is less understood, but there are some results in thiturelike control parameteF, the model first undergoes sym-
case too. In addition to numerous examples of models with anetry breaking phase transition. Calculation of the Binder
single absorbing state, and thus belonging to DP universalitgumulant indicates that this transition belongs to the Ising
class[1], there are some indications that fd=>1 models universality class. Upon further decreaseTirthe model un-
with more than two symmetric absorbing states the phasdergoes a second phase transition into the absorbing phase.
transition should be discontinuo{@]. In between, there are Since at this point the symmetry is already broken, this sec-
models with two absorbing states. Dorm@tal. have shown ond transition, as expected, belongs to the DP universality
that in this case and fat=2 a group of models belongs to a class. A similar behavior is observed for the nearest-neighbor
new universality class called a voter universality clpkg]. model in the three-dimensional case.

Originally, a voter model was introduced in a rather non- The observation that a certain type of a nonequilibrium
physical context of opinion spreadifl]. Later on numer- critical point can be considered as superposition of two other
ous examples of related and physically more relevant modelsritical points is, in our opinion, new, and hopefully, it should
were also studiedi12]. Although the phase transition in the increase the understanding of nonequilibrium phase transi-
voter universality class is continuous, the decay of the ordetions. Let us notice that a superposition of different critical
parameterp upon approaching the critical point is slower points exists in some equilibrium systems. For example, in
than any power-law decgy~ €?, wheree measures the dis- the frustrated XY model two phase transitions of the
tance from the critical point. Formally, such a decay might beKosterlitz-Thouless typegfU(1)] and of the Ising type
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(Z,) under certain conditions most likely happen simulta- 0.8 y - - y y - y
neously[14]. Other examples are multicritical points in ran- 07 | Lot ]
dom magnet$15] or in a diffusive kinetic Ising mod€l16]. ' Loe ’

Before defining our model, let us recall that the equilib- 0.6 [ e .
rium ferromagnetic two-state Potts model can be defined us y**“ « %
ing the following Hamiltoniar{17]: 051 o . |

"o g4t }{ x ]
Q f x =
H= _UEJ) a0, (o 03 | ) -
02t ; |
where summation is over pairs, ) of interacting sites on a sl
Cartesian lattice of the linear size With each sitei we 01 Xoeo?‘x 1
assign a variable;=0,1 ands is the Kronecker delta func- 0 00l s . . s .
tion. L7 18 19 2 21 22 23 24 25
To study model(1) using Monte Carlo simulations, one T

constructs a stochastic Markov process with suitably chosen FIG. 1. The density of active sites(+) and the inverse of th
transition rates. One of the possible choices corresponds tv%rianc.e 'Of ma netizgtioaar%ulg S"e?é )aafactoreof SG;)G gs ae
the so-called Metropolis algorithm. In this algorithm one 9 P y

. . ..~ function of temperature for the two-dimensional nearest-neighbor
looks at the energy differenckE between the final and ini- model. Simulations were done fdr=500. Close to the critical

tla_l conﬁgg/?anons and .accepts the move wnh probabilityte|rnperatureTc (=1.7585[9]) the linear decay o~ might be
min{le” ="}, whereT is temperature. To obtain a model ftected by some logarithmic correctioft0].
that would have symmetric absorbing states, we modify the
Metropolis algorithm of mode(l) as follows[9]: when all  model, we could not draw definite conclusions about the na-
neighbors of a given siteare in the same state as this site, ture of the critical point in this case. Indeed, having a double
then sitei cannot change its state. Thus, the dynamics of ousymmetric absorbing state and being driven only by interfa-
model is defined as followsi) Select randomly the siteand  cial noise, the model satisfies the criterions of Dornic et al.
its possible final statg(ii) If AE<z, update the sité with  for belonging to the voter universality class. Additional con-
the probability migl,e 25T}, wherez is the number of firmation is shown in Fig. 1. One can see that the variace
neighbors interacting with sitie(in our paperzisi indepen- diverges at the same temperature whereanishes. More-
dend. Let us notice, that after such a modificatidhjs no  over,s™! seems to decay linearly at the critical point, which
longer temperature. Nevertheless, we will keep such a termimplies thaty= 1, as also predicted for this universality class
nology. Moreover, the unit of time is defined as a single  [10].
average update of every site. Model with up to third-nearest-neighbor interactions on
We used numerical simulations to examine the propertiesquare lattice Studying our nonequilibrium Potts model
of our model. A natural characteristic of models with absorb-within a mean-field approximation at the pair level, we no-
ing states is the steady-state density of active gitels our  ticed that, for sufficiently large coordination numbzrthe
model, a given sité is active when at least one of its neigh- structure of the solution qualitatively changes in a way that
bors is in a state different thanOtherwise the siteis called  clearly indicates two separate transitions in the m#i@). It
nonactive. Moreover, we used the so-called dynamic Montgrompted us to simulate our model with interactions includ-
Carlo method where one sets the system in the absorbingg also further neighbors. First we studied the model with
state with activity only locally initiated and measure someinteractions up to second-nearest neighbarsg). It turned
stochastic properties of rum&8]. Typical characteristics are out, that in this case either the model belongs to the voter
the survival probabilityP(t) that activity survives at least universality class or there is only extremely small splitting
until time t and the average number of active sifdét)  beyond the resolution of our simulations.
(averaged over all runsAt criticality P(t) and N(t) are However, for the model with interactions up to third-
expected to have power-law decaR(t)~t ° and N(t) nearest neighborszE12), a qualitatively new picture
~17. To detect a possible symmetry breaking in the modelgmerges. Indeed, one can see in Fig. 2 that the variance
we measured the magnetizatiom= 2/Ld(2iai)—1 and its diverges at temperaturg , which is clearly larger than tem-
variances=1/L%((2=(o;— (o)) —L%?). At the symmetry peratureT,, wherep vanishes. In the temperature interval
breaking critical point the variancs, which is related to T.<T<T, our model is magnetize(Fig. 2). To avoid rather
magnetic susceptibility for equilibrium systems, is expectedslow coarsening effects in this interval, it is better to start
to diverge in the limitL —oo. Below we present the results of simulations from an asymmetrian#0) initial configura-
our simulations. We ensured that the lattice dizés large  tion.
enough for the finite-size effects to be negligible. To examine the nature of the phase transitiom &T),
Model with nearest-neighbor interactions on square lat-we calculated the so-called Binder cumuld20] U=1
tice. In this case the model was already studied by some of- m4/3m§, wherem,, is thenth moment of magnetization. In
us, but only in the context of an absorbing phase transitiorFig. 3 one can see that at the crossing painis relatively
[9]. A very slow decay ofp at the critical point was ob- close to the universal valug=0.6107 of thed=2 lIsing
served, but being unaware of the relation with the votemodel[21]. Although our model is nonequilibrium type, its
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FIG. 2. The density of active sites (+), magnetizationm FIG. 4. The scaling of the density of active sifes the vicinity

(0), and the inverse of the variance of magnetizasonultiplied of the critical pointT.=4.738 in the two-dimensional model with
by a factor of 30 K) as a function of temperature for the two- 12 neighbors. Simulations were done for500 and the linear fit
dimensional model with 12 neighbork € 400). has a slopgg=0.61.

critical behavior atT=T, is the same as in equilibrium timate »=0.253), which is in a reasonable agreement with
(Ising) systems. Such a feature is in agreement with som&P value 0.23Q1]. We also measureB(t) and from these
expectationg22] that at the critical point of many nonequi- data(not presented heyeve estimates= 0.44(3), which can
librium systems only some general propertieg., symme- be compared with the DP value 0.4H. Our estimation of
try) determine the nature of the critical point while some dynamical exponents is much different from that obtained for
others, as e.g., a lack of detailed balance, are very oftefome models of voter universality clags~0.9, »~0.0
irrelevant in this respect. Since the symmetry is already brof4,9].

ken upon approaching the critical pointltT., we expect Let us note that similar to the nearest-neighbor case, the
that this critical point should belong to the {21) DP uni- z=12 model also has two absorbing states and is driven only
versality class. Simulations confirm these expectations. I®Y interfacial noise. Nevertheless, the critical behavior in this
F|g 4 one can see that close to the critical poin’faﬂ'c the case is much different from the voter model. This is thus yet
density of active sites behaves @s (T—T.)? and we esti- another example that shows that simple criterions most likely
mate that@=0.61(4), which can be compared with the DP cannot be used for classifying nonequilibrium critical points.
value 0.584[1]. Additional confirmation is obtained using ~ Model with nearest-neighbor interactions on simple cubic
the dynamical Monte Carlo method, which enables us also tittice. We also studied the three-dimensional nearest-
precisely locate the critical temperatufe,=4.738@5).  neighbor version of our modelz¢&6). Similar to thez
From the measurement f(t) (Fig. 5 at criticality we es-
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FIG. 5. The average of the number of active sid@) as a

FIG. 3. The Binder cumularit as a function of temperatufe  function of timet calculated using dynamical Monte Carlo for the
for the two dimensional model with 12 neighbors. The horizontaltwo-dimensional next-next-nearest-neighbor model dram top)
dotted line denotes the universal valle~0.6107 for thed=2 T=4.739, 4.7385, 4.738&critical poiny, 4.7375, 4.737, 4.736,
Ising model. To diminish fluctuations, long simulations were made4.735. For each temperature, the average is made usually over 2
with the simulation time~5x 10° Monte Carlo steps. X 10* independent runslL(=5000).
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1 - - - - (3+1) DP universality class. Confirmation of such a sce-
09 F § R I nario will require, however, extensive numerical simulations
ogl 87 * and is left for the future.
) 5l In summary, we have shown that models with two absorb-
071 e ing states ind>1 dimensions might exhibit two transitions
-~ 06 a where the first one breaks the symmetry and the second one
;» 05 bE 1 brings the model into an absorbing state. In the voter model
g gal Ie x <] and some related models, these two transitions coincide.
) . L Hopefully, such an interpretation of the voter model will con-
03 r ; o L 1 tribute to a better understanding of its unusual critical behav-
02 § T i 1 ior. For example, diminishing the strength of the further-
01l ; T j neighbor interactions, we can reduce the splitiing T. and
o L " , , , examine a crossover to the voter universality class at which
2.5 26 27 2.8 29 3 T,=T,. Of course, the Ising-type phase transition is not the

only type of the symmetry breaking and other types, e.g.,
three-state Potts oY, are also possible in nonequilibrium
(0), and the inverse of the variance of magnetizaianultiplied ~ SyStéms. It would be interesting to examine whether such

by a factor of 5 () as a function of temperature for the three- Cfitical points can be superposed with a DP universality
dimensional nearest-neighbor model=60). class, which might result in new types of critical behaviors.

FIG. 6. The density of active sites (+), magnetizationm
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