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Splitting the voter Potts model critical point
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Recently some two-dimensional models with double symmetric absorbing states were shown to share the
same critical behavior that was called the voter universality class. We show that, for an absorbing-states Potts
model with finite but further than nearest-neighbor range of interactions, the critical point is split into two
critical points: one of the Ising type and the other of the directed percolation universality class. Similar splitting
takes place in the three-dimensional nearest-neighbor model.
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Nonequilibrium phase transitions are recently attract
increasing theoretical interest. One of the motivations d
ing the research in this field is the idea that, similar to eq
librium systems, nonequilibrium continuous phase tran
tions can be also divided into several, hopefully not so ma
universality classes@1#. Indeed, there are some examples t
show that such a classification, at least to some extent, ca
made. Particularly interesting results exist for models w
absorbing states, and a notable example is the directed
colation~DP! universality class. A conjecture by Jenssen a
by Grassberger@2# that models with a single absorbing sta
should belong to the same universality class has by now v
convincing supports. Another universality class encompas
models with double absorbing states@3,4#, which in one di-
mension (d51) includes also models whose dynamics h
some additional symmetry~parity conservation! @5#. How-
ever, it is also known that any asymmetry in the dynam
which would favor any of the absorbing states, drives
system into a DP universality class@6#. Universality of mod-
els with more than two absorbing states is even more p
lematic, because for models with symmetric absorbing st
some details of the dynamics might affect the critical beh
ior too @7#. It is becoming clear that a task of classifyin
nonequilibrium phase transitions is far from completed@8#.

Numerical results that support the above classificat
come mainly from one-dimensional models. The situation
d.1 is less understood, but there are some results in
case too. In addition to numerous examples of models wi
single absorbing state, and thus belonging to DP universa
class@1#, there are some indications that ford.1 models
with more than two symmetric absorbing states the ph
transition should be discontinuous@9#. In between, there are
models with two absorbing states. Dornicet al. have shown
that in this case and ford52 a group of models belongs to
new universality class called a voter universality class@10#.
Originally, a voter model was introduced in a rather no
physical context of opinion spreading@11#. Later on numer-
ous examples of related and physically more relevant mo
were also studied@12#. Although the phase transition in th
voter universality class is continuous, the decay of the or
parameterr upon approaching the critical point is slow
than any power-law decayr;eb, wheree measures the dis
tance from the critical point. Formally, such a decay might
1063-651X/2003/67~5!/056108~4!/$20.00 67 0561
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described withb50. In addition, the time decay of the orde
parameter at criticality is also slower than any power-l
decay and is, in fact, logarithmic@r;1/ln(t)# as shown ex-
actly @13#. Some other exponents of voter universality cla
were also determined@10#.

An interesting feature of the voter model, which was n
yet addressed, is the fact that at its critical point actually t
phenomena seem to take place. One of them is the symm
breaking between two competing states of the model, wh
is similar to the symmetry breaking in the equilibrium Isin
model. The second phenomenon is the phase transition
tween active and absorbing phases of the model. Since t
is no symmetry breaking transition in one-dimensional eq
librium Ising model, it is easy to understand that for mod
with two absorbing states ind51, the symmetry breaking
must result from the absorbing phase transition and thus b
phenomena take place simultaneously. But this is no lon
the case ford.1 models, and the coincidence of these tw
transitions should not be taken for granted.

In the present paper we study a recently introduced n
equilibrium Potts model whose dynamics has two absorb
states@9#. We show that the model with nearest-neighb
interactions on square lattice belongs to the voter univer
ity class. However, with an extended range of interactio
~up to third nearest neighbors! the voter critical point is split.
Starting from the disordered phase and reducing a temp
turelike control parameterT, the model first undergoes sym
metry breaking phase transition. Calculation of the Bind
cumulant indicates that this transition belongs to the Is
universality class. Upon further decrease inT, the model un-
dergoes a second phase transition into the absorbing ph
Since at this point the symmetry is already broken, this s
ond transition, as expected, belongs to the DP universa
class. A similar behavior is observed for the nearest-neigh
model in the three-dimensional case.

The observation that a certain type of a nonequilibriu
critical point can be considered as superposition of two ot
critical points is, in our opinion, new, and hopefully, it shou
increase the understanding of nonequilibrium phase tra
tions. Let us notice that a superposition of different critic
points exists in some equilibrium systems. For example
the frustrated XY model two phase transitions of th
Kosterlitz-Thouless type@U(1)# and of the Ising type
©2003 The American Physical Society08-1
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(Z2) under certain conditions most likely happen simul
neously@14#. Other examples are multicritical points in ra
dom magnets@15# or in a diffusive kinetic Ising model@16#.

Before defining our model, let us recall that the equil
rium ferromagnetic two-state Potts model can be defined
ing the following Hamiltonian@17#:

H52(
( i , j )

ds is j
, ~1!

where summation is over pairs (i , j ) of interacting sites on a
Cartesian lattice of the linear sizeL. With each sitei we
assign a variables i50,1 andd is the Kronecker delta func
tion.

To study model~1! using Monte Carlo simulations, on
constructs a stochastic Markov process with suitably cho
transition rates. One of the possible choices correspond
the so-called Metropolis algorithm. In this algorithm on
looks at the energy differenceDE between the final and ini
tial configurations and accepts the move with probabi
min$1,e2DE/T%, whereT is temperature. To obtain a mod
that would have symmetric absorbing states, we modify
Metropolis algorithm of model~1! as follows@9#: when all
neighbors of a given sitei are in the same state as this si
then sitei cannot change its state. Thus, the dynamics of
model is defined as follows:~i! Select randomly the sitei and
its possible final state.~ii ! If DE,z, update the sitei with
the probability min$1,e2DE/T%, where z is the number of
neighbors interacting with sitei ~in our paperz is i indepen-
dent!. Let us notice, that after such a modification,T is no
longer temperature. Nevertheless, we will keep such a te
nology. Moreover, the unit of time is defined as a single~on
average! update of every site.

We used numerical simulations to examine the proper
of our model. A natural characteristic of models with abso
ing states is the steady-state density of active sitesr. In our
model, a given sitei is active when at least one of its neig
bors is in a state different thani. Otherwise the sitei is called
nonactive. Moreover, we used the so-called dynamic Mo
Carlo method where one sets the system in the absor
state with activity only locally initiated and measure som
stochastic properties of runs@18#. Typical characteristics are
the survival probabilityP(t) that activity survives at leas
until time t and the average number of active sitesN(t)
~averaged over all runs!. At criticality P(t) and N(t) are
expected to have power-law decay:P(t);t2d and N(t)
;th. To detect a possible symmetry breaking in the mod
we measured the magnetizationm52/Ld^( is i&21 and its
variances51/Ld^(2( i(s i2^s i&)2Ld)2&. At the symmetry
breaking critical point the variances, which is related to
magnetic susceptibility for equilibrium systems, is expec
to diverge in the limitL→`. Below we present the results o
our simulations. We ensured that the lattice sizeL is large
enough for the finite-size effects to be negligible.

Model with nearest-neighbor interactions on square l
tice. In this case the model was already studied by some
us, but only in the context of an absorbing phase transi
@9#. A very slow decay ofr at the critical point was ob-
served, but being unaware of the relation with the vo
05610
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model, we could not draw definite conclusions about the
ture of the critical point in this case. Indeed, having a dou
symmetric absorbing state and being driven only by inter
cial noise, the model satisfies the criterions of Dornic et
for belonging to the voter universality class. Additional co
firmation is shown in Fig. 1. One can see that the variancs
diverges at the same temperature wherer vanishes. More-
over,s21 seems to decay linearly at the critical point, whic
implies thatg51, as also predicted for this universality cla
@10#.

Model with up to third-nearest-neighbor interactions o
square lattice. Studying our nonequilibrium Potts mode
within a mean-field approximation at the pair level, we n
ticed that, for sufficiently large coordination numberz, the
structure of the solution qualitatively changes in a way t
clearly indicates two separate transitions in the model@19#. It
prompted us to simulate our model with interactions inclu
ing also further neighbors. First we studied the model w
interactions up to second-nearest neighbors (z58). It turned
out, that in this case either the model belongs to the vo
universality class or there is only extremely small splitti
beyond the resolution of our simulations.

However, for the model with interactions up to third
nearest neighbors (z512), a qualitatively new picture
emerges. Indeed, one can see in Fig. 2 that the varians
diverges at temperatureTI , which is clearly larger than tem
peratureTc , wherer vanishes. In the temperature interv
Tc,T,TI our model is magnetized~Fig. 2!. To avoid rather
slow coarsening effects in this interval, it is better to st
simulations from an asymmetric (mÞ0) initial configura-
tion.

To examine the nature of the phase transition atT5TI ,
we calculated the so-called Binder cumulant@20# U51
2m4/3m2

2, wheremn is thenth moment of magnetization. In
Fig. 3 one can see that at the crossing pointU is relatively
close to the universal valueU50.6107 of thed52 Ising
model @21#. Although our model is nonequilibrium type, it

FIG. 1. The density of active sitesr (1) and the inverse of the
variance of magnetizations multiplied by a factor of 5 (3) as a
function of temperature for the two-dimensional nearest-neigh
model. Simulations were done forL5500. Close to the critical
temperatureTc (51.7585 @9#! the linear decay ofs21 might be
affected by some logarithmic corrections@10#.
8-2
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SPLITTING THE VOTER POTTS MODEL CRITICAL POINT PHYSICAL REVIEW E67, 056108 ~2003!
critical behavior atT5TI is the same as in equilibrium
~Ising! systems. Such a feature is in agreement with so
expectations@22# that at the critical point of many nonequ
librium systems only some general properties~e.g., symme-
try! determine the nature of the critical point while som
others, as e.g., a lack of detailed balance, are very o
irrelevant in this respect. Since the symmetry is already b
ken upon approaching the critical point atT5Tc , we expect
that this critical point should belong to the (211) DP uni-
versality class. Simulations confirm these expectations
Fig. 4 one can see that close to the critical point atT5Tc the
density of active sites behaves asr;(T2Tc)

b and we esti-
mate thatb50.61(4), which can be compared with the D
value 0.584@1#. Additional confirmation is obtained usin
the dynamical Monte Carlo method, which enables us als
precisely locate the critical temperatureTc54.7380(5).
From the measurement ofN(t) ~Fig. 5! at criticality we es-

FIG. 2. The density of active sitesr (1), magnetizationm
(h), and the inverse of the variance of magnetizations multiplied
by a factor of 30 (3) as a function of temperature for the two
dimensional model with 12 neighbors (L5400).

FIG. 3. The Binder cumulantU as a function of temperatureT
for the two dimensional model with 12 neighbors. The horizon
dotted line denotes the universal valueU;0.6107 for thed52
Ising model. To diminish fluctuations, long simulations were ma
with the simulation timet;53106 Monte Carlo steps.
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timateh50.25(3), which is in a reasonable agreement wi
DP value 0.230@1#. We also measuredP(t) and from these
data~not presented here! we estimated50.44(3), which can
be compared with the DP value 0.451@1#. Our estimation of
dynamical exponents is much different from that obtained
some models of voter universality classd;0.9, h;0.0
@4,9#.

Let us note that similar to the nearest-neighbor case,
z512 model also has two absorbing states and is driven o
by interfacial noise. Nevertheless, the critical behavior in t
case is much different from the voter model. This is thus
another example that shows that simple criterions most lik
cannot be used for classifying nonequilibrium critical poin

Model with nearest-neighbor interactions on simple cub
lattice. We also studied the three-dimensional neare
neighbor version of our model (z56). Similar to thez

l

e

FIG. 4. The scaling of the density of active sitesr in the vicinity
of the critical pointTc54.738 in the two-dimensional model with
12 neighbors. Simulations were done forL5500 and the linear fit
has a slopeb50.61.

FIG. 5. The average of the number of active sitesN(t) as a
function of timet calculated using dynamical Monte Carlo for th
two-dimensional next-next-nearest-neighbor model and~from top!
T54.739, 4.7385, 4.738~critical point!, 4.7375, 4.737, 4.736
4.735. For each temperature, the average is made usually ov
3104 independent runs (L55000).
8-3
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512 case, here again the absorbing and magnetic phase
sitions are separated~Fig. 6!. We expect that in this case th
magnetic phase transition belongs to thed53 Ising univer-
sality class and the absorbing phase transition belongs to

FIG. 6. The density of active sitesr (1), magnetizationm
(h), and the inverse of the variance of magnetizations multiplied
by a factor of 5 (3) as a function of temperature for the thre
dimensional nearest-neighbor model (L560).
ls

v.
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(311) DP universality class. Confirmation of such a sc
nario will require, however, extensive numerical simulatio
and is left for the future.

In summary, we have shown that models with two abso
ing states ind.1 dimensions might exhibit two transition
where the first one breaks the symmetry and the second
brings the model into an absorbing state. In the voter mo
and some related models, these two transitions coinc
Hopefully, such an interpretation of the voter model will co
tribute to a better understanding of its unusual critical beh
ior. For example, diminishing the strength of the furthe
neighbor interactions, we can reduce the splittingTI2Tc and
examine a crossover to the voter universality class at wh
TI5Tc . Of course, the Ising-type phase transition is not
only type of the symmetry breaking and other types, e
three-state Potts orXY, are also possible in nonequilibrium
systems. It would be interesting to examine whether s
critical points can be superposed with a DP universa
class, which might result in new types of critical behavio
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Menyhárd and G. Ódor, J. Phys. A27, 7739 ~1996!; A. Lip-
owski, ibid. 29, L355 ~1996!.

@4# H. Hinrichsen, Phys. Rev. E55, 219 ~1997!.
@5# P. Grassberger, F. Krause, and T. von der Twer, J. Phys. A17,

L105 ~1984!; I. Jensen, Phys. Rev. E50, 3623~1994!; H. Taka-
yasu and A.Yu. Tretyakov, Phys. Rev. Lett.68, 3060~1992!.

@6# H. Park and H. Park, Physica A221, 97 ~1995!.
@7# A. Lipowski and M. Droz, Phys. Rev. E66, 016106~2002!.
@8# For some recent developments see e.g., G. O´ dor, e-print

cond-mat/0205644.
@9# A. Lipowski and M. Droz, Phys. Rev. E65, 056114~2002!.

@10# I. Dornic, H. Chate´, J. Chave, and H. Hinrichsen, Phys. Re
Lett. 87, 045701~2001!.

@11# T.M. Liggett, Interacting Particle Systems~Springer, New
York, 1985!.
@12# M. Scheucher and Spohn, J. Stat. Phys.53, 279 ~1988!; M.J.
de Oliveira, J.F.F. Mendes, and M.A. Santos, J. Phys. A26,
2317 ~1993!; G. Szabo and A. Szolnoki, Phys. Rev. E65,
036115~2002!.

@13# L. Frachebourg and P.L. Krapivsky, Phys. Rev. E53, R3009
~1996!.

@14# B. Berge, H.T. Diep, A. Ghazali, and P. Lallemand, Phys. R
B 34, 3177 ~1986!; H. Eikmans, J.E. van Himbergen, H.J.
Knops, and J.M. Thijssen,ibid. 39, 11 759~1989!.

@15# S. Fishman and A. Aharony, Phys. Rev. B18, 3507~1978!.
@16# K.E. Bassler and Z. Ra´cz, Phys. Rev. Lett.73, 1320~1994!.
@17# F.Y. Wu, Rev. Mod. Phys.54, 235 ~1982!.
@18# P. Grassberger and A. de la Torre, Ann. Phys. Paris122, 373

~1979!.
@19# A.L. Ferreira and A. Lipowski~unpublished!.
@20# K. Binder, Z. Phys. B: Condens. Matter43, 119 ~1981!.
@21# G. Kamieniarz and H.W.J. Blo¨te, J. Phys. A26, 201 ~1993!.
@22# G. Grinstein, C. Jayaprakash, and Y. He, Phys. Rev. Lett.55,
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